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ABSTRACT

This thess investigates and demondrates the workability of the time-reversed
process for radar imaging applications, particularly, for bi-gatic or multi-static radars.
One benefit of the time-reversed process is its ability to reduce the caculaion to
determine the targets shape. The finite-difference-ime-domain (FDTD) method is used

to demondrate the time-reversed process.

Following an oveview and description of the principles of the time-reversed
process, the FDTD method is applied to the wave equation and the time reversed- process
in 2-D space. The FDTD numericdl model is developed and used for producing
fundamenta examples on conducting targets. The examples reved that the time-reversed
process can be employed for radar imaging within certan condraints Findly,
conclusons regarding the time-reversed-process are presented and recommendations for

future research are provided.
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INTRODUCTION

A. OVERVIEW
Bi-gatic or multi-datic radar hes been recognized as an effective tool for

detecting and tracking low observable targets, such as dedth arcraft [Ref.l]. The
development of these systems emphasized measurement of the target’s precise location in
range and angle. However, in generd, they are not capable of identifying the shape of a
target. In many gtudions, this information may be important to make an gppropricte
decison or to diginguish a friendly target from the enemy. Because of its importance,
radar imaging has been a topic of intense research for the past severa decades, being

driven by the need to identify friend from foe in future radar systems.

At present some useful radar techniques are available, such as SAR/ISAR, which
produce very detailed information of a target. These techniques require, however, a
relatively long process in obtaining the information. Therefore, more timely processng

techniques are desired in many Stuations.

To obtan information reaing target identity to the receved radar dgnature,
inverse scattering problems have to be solved. Solutions to the forward scattering
problem, which predict scattering from known objects, are diverse and wel known.
Once the scattered wave is known implicitly or explicitly, determining a target’'s shape is
possble, in theory, by inverting the forward scattered solution process.  Many methods
for inverse scattering have been investigated. For example, Colton and Kress [Ref.2]
introduced inverse scattering theory in which Colton, Giebermann and Monk [Ref.3]

provided numericd examples of obtaining the shgpe of an obdacle in three dimensions



udng time-harmonic incident and scattered acoustic waves. These methods were induced

by solving the frequency- domain Helmholtz equation.

Some ussful methods for solving scettering problems in the time- doman exig,
such as time-domain physica optics, time-domain integrd equations and finite-difference
time-domain (FDTD). These methods can be used, in theory, to determine or estimate
the shape of a scattering obgtacle.  Although there are many publications available on the
inverse scettering time-domain methods, these ded mainly with an dectric or magnetic
fidd integrd equation [Ref.4]. The integrd equation agpproach requires enormous
computationa resources to determine the shape of a complex target and requires a very

high ssgndl to noise ratio in the received scattered Sgnatures.

This thesis invedtigates a new technique for estimating the location and shape of
one or more targets by processng scattering signature information captured by sensors on
the perimeter of a region. A reversed-time solution within the region is performed usng
the FDTD method. Such a method has the potential for employment by bi-static or

multi- static radar systems.

Fink [Ref.5] introduced the concept of “Time Reversed Acoudic Imaging”
associated with wave field propagation.  Fink’s colleagues [Ref. 6, 7, 8, 9] have worked
with this concept. The basc idea of this process is based on an dementary fact of time-
reversd invariance of the wave equation in a losdess medium. Briefly, the process occurs
when the wave field from an obstacle or a target is propagated and is captured on the
aurrounding surface usng a number of transducers. These transducers combine the
functions of microphone and loudspesker, emitting a time-reversed replica of the

recaved dgnature from each transducer. These emissons generate a time-reversed field
2



within the enclosed region, which collgpses upon the target. In other words, the wave
field is recorded on the boundary and is reradiated as an gppropriate reversed field. The
reversed fidd, then, focuses on the origind source. This process may be extended to

€lectromagnetic waves.

The “Time Reversed Imaging” technique, which is the subject of study in this
thess, uses the “Time Reversed Acougtics’ concept. This concept focuses on wave fidd
propagation, in paticular wavefronts. This implies that the fidd is not aways present a
the target location, which may reduce computationa time. Moreover, focusng on
wavefronts enables this concept to be used for a wide frequency range and for weak
scattering cases. In generd terms, this concept seems smple and logicd, but higoricaly

it has not been used for eectromagnetic waves.

B. THESISOBJECTIVE
This theds invedigates application of the time-reversed process to

electromagnetic waves and employment for bi-daic or multi-static pulsed radar
goplications. The thess develops needed numericdl modding and sSmulation usng the

FDTD method, which is an efficient way to represent this process for vector fieds.

In Chapter 2, the general principle of the time reversd process is introduced.
Chapter 3 focuses on the numericd representation and description of modding and
amulation. Chapter 4 presents numericd examples usng MATLAB.  Findly, Chapter 5

summarizes and concludes this study with suggestions for further research.
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. GENERAL PRINCIPLE OF TIME- REVERSED PROCESS

This chapter presents an overview of the time-reversed process. Details can be

found in Reference 8.

A. TIME REVERSAL OF ELECTRIC FIELDS
Maxwdl’s eguations induce the wave equaion for the dectric fidd in losdess

homogeneous media.  In free space, thisiswritten as

1 12E(r,t)
2

NZE(r,t)-
() =1

=0 Q)

where N? represents the Laplacian operator with respect to the spatia r- coordinates and

C represents the phase velocity in free space.

Looking a equation (1), it contains only a second order time—derivative operator.
It follows, therefore, that if E(r, t) is a solution, then E(r, -t) is dso a solution. That is, the
wave eguation is unchanged under a time—eversd transform if there is no absorption
during propagatiion in the medium. This property is the dating point of the time-
reversal principle. In order for the time—reversa invariance to remain vaid, no loss or

absorption during propageation is assumed.

The specia property of time reversd has been observed by Stokes [Ref. 9] in the
classcd experiment of reflection and transmisson of a plane wave between two different
media Conddering an incident plane wave of amplitude Eg propageting from medium 1
to medium 2, we can observe the amplitude of the reflected fidd (Eor) and the transmitted

fidd (Eo). Here, introducing r as the amplitude reflection coefficient and t as the
5



amplitude transmisson coefficient leads to Eor = r Egi and Eoi= t Eg. Following this, a
solution of the wave equation, E(r, t), results from three plane waves. Figure 1 indicates

this Stuation.

In the case of no absorption, a wave must be reversble in accordance with the
reciprocity theorem leading to the principle of revershility. Thus, the condition of
Figure 2 mugt dso be physicdly possble.  Then, the time- reversed solution, E(r, -t), can
be described by Egi, Eor and Eor.  Accordingly, when examining the Stuation in Fgure 3,
there are two incident waves of amplitude rEq and €pi. One wave whose amplitude is
tEo is both reflected and transmitted a the interface. Letting r and t' be the amplitude
reflection and transmisson coefficient, regpectivdy, for a wave incident from medium 2
to medium 1, the reflected portion is tr'Ep; and the tranamitted portion is tt' Eq;. Smilarly,
the incoming wave whose amplitude is IEqy; Splits into both the amplitude rr Eqi and rt Eo;.

Using the superpostion principle, it follows that

tt' Eoi+ 1T Eqi = Eoi @)

tr' Egi+ rt Egi=0 3
Therefore,

t=1-r 4)

r=-r 5)

If the interface between medium 1 and medium 2 is a perfect conductor, t and t'
ae zero. This results in e@ther r= 1, r= -1 orr= -1, r=1.  For amplicity, this thess
consders only targets or obstacles whose surfaces have the condition of a perfect

conductor. Furthermore, it is important to note that the two rdationships written above

6



are only vaid if the reflected and tranamitted plane waves are able to propagate without
atenuation, which implies that they have a red wave number. The incident fidd we

condder in this thess does not contain any evanescent waves that cannot be time-

Eoi rEo
Medium 1

Medium 2

reversed.

tEot

Figure 1. Reflection and transmission of a plane wave dong the interface between
medium 1 and medium 2



Eoi rEoj

Medium 1

Medium 2
tEoi

Figure 2. Time- reversal of Figure 1

(= rEoi

Medium 1

Medium 2

tr' Egi tEoi

MEoi

Figure 3. Explanaion of time- reversd for reflection and transmisson



B. PRACTICAL CONSIDERATION
The initid conditions of a target or an obstacle and the boundary conditions

determine a unique solution, E(r, t) to the wave equation in (1). In the time—reversed
operation, the solution E(r, -t) is given by modifying the initid condition and the
boundary condition.  In practice, however, because every physicad phenomenon requires
caudity, E(r, -t) is not a vaid solution.  Therefore, we consder E(r, T-t) under the
limited time intervd T, where T is sufficently advanced in time so0 that E(r, t) is regarded
as zero for t > T. To assume otherwise requires “initid condition” knowledge of the
fidds E(r, t) in the whole three-dimensona volume during the time interval T in order to
generate the time—reversed solution E(r, T-t). A more redigic way to generate the
time—reversed solution is to use the advantage of Huygens principle. Based on this
principle, the time-reversed operation in the three-dimensond volume requires time-
reversed boundary conditions on an enclosng two-dimendond surface. Usng this

approach, focusing on atarget can be described in the following way.

During the recording gep, the target within the volume surrounded by a finite
number of recevers generates a field, E(r, t), which produces an expanding wavefront.
The recavers sample the fidd a locations on the encdosng surface and have the
cgpability to measure the fidd without disurbing the propagation of the fidd.
Therefore, the fidd is propagated in a free unbounded space. During the time-reversed
recongtruction, the target behaves as a passve source or is ignored. Each recelver then
generates the fidd, E(r, T-t), that corresponds exactly to the time-reversd of the
corresponding field measured during the recording step. A time-reversed fiedd back-
propagates insde the recording surface and is focused on the initid target postion.

Figures 4 and 5 illustrate the recording and reconstruction steps, respectively.
9



Receaiver
o
o

® S Recording surface

Output

E(r, t)

Figure 4. Recording step of the time- reversal process with a closed surface
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Recaver
®
®

® S: Recording surface

//\/{/’ \\\;\/\\\ . .
/ b ‘,. Collgpsing
y/\ ;) wavefront
il / . Input

®

®
E(r, -t)

Initid

target position

Figure 5. Recongtruction step of the time-reversal process with a closed surface
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I1l. NUMERICAL MODELING OF TIME -REVERSED PROCESS

This chapter presents an overview of the finite-difference time-domain (FDTD)
numericd modd used for demondraing the time-reversed process in 2-D space. The
FDTD method is an appropriate way to represent this process, applying agpproximations
for the space and time partia derivaives within the wave equation. Space and time

discretizations are selected to ensure the numerical sability of the agorithm.

For the region defined, the wave equation is solved subject to initid value and
boundary vaue conditions according to eectromagnetic theory. This is the same
procedure gpplied to the FDTD method. Overdl, the FDTD is a time-marching procedure
discretely smulating the continuous fidds that solve the wave equation. The solution is
subject to the initid and boundary conditions. At each time step, the system of equations
is used to update the fidd components and is fully explicit so tha setting up or solving
linear equations is not required. Time depping is continued, adlowing one to observe
electromagnetic wave propagation and scattering. Details on the FDTD can be found in

many publications. Some of these are listed in References 10 and 11.

The next section presents numerica modeding of the wave equation followed by

the forward and reverse processes, and is based on Reference 12. For smplicity, a 3D
(2-dimentiond plus time) rectangular region with E,(x,y,t) (TM; waves) is assumed

throughout thisthes's.

13



A. THE FDTD SOLUTION OF THE WAVE EQUATION
This section briefly provides details on how the wave equation can be solved with

the FDTD method.

Consder solving the wave equation in a rectangular region, 0= x = a, 0= y =b and

t =0, asdepicted in Figure 6,

1TE XYY _g

N2E, (x, y,t) - P (6)
with initial conditions

E.(xy,00=f(xy) ©)

= (y.0)= gxy) ®
and boundary conditions

E.(0y.)=ea(y.t), E(ayl)=e(yt) ©

E,(x,0,t) = e (x,t), E,(x,b,t) =e,(x1)

Here, the assumption is that a = Mh and b= Nh, where ?x=?y=h is an equd grid
goacing in x and y with M and N as abitrary integers. Letting 2 be the time step and T

be the desired time intervad, the grid positions are given by

Xn =(m-Dh,y, =(n-Dhadt =(p- YDt (10)
wheem=1,M, n=1,N and p=1T.
We define E,(m,n, p) to bethe discrete space-timesampleof E, (X, Y,.,t,) -

Applying the finite difference approximations in gpace and time at the point

14



(m,n, p) to each term of the wave equation gives,

NZE, (Xp, Vs t,) >>h—12{Ez(m+ln, p)+E,(m-1n,p)+E,(mn+1p)

(11)
+E,(m,n-1,p)- 4E,(mn, p)}
1 TPE, (X Yo t,) 1
T Eogr B MmN p DY E(min p- D) 12

- 2E,(m,n, p)}

Subtituting (11) and (12) into (6) and solving for E, at tp.1, yields:

2

E,(mn, p+1) »@9 E,(m+1n,p)+E,(Mm-1n p)+E,(Mn+1p)+E,(Mmn-1p)
z 8 z

+21 28@—”9 EE (mn, p)- E,(mn,p- 1) 3
%]

T

Equation (14) implies that we can predict E; a the point &m, Yn, tp+1) from Sx previous
pointsin the grid as shown in Figure 7.
By introducing 2D spatial arrays Ep =EJ: , : , p), where E is an MxN aray a

time step, p, we can rearrange equation (14) to the form,

.2 3
E,. _ DO {Axe +E, <8} + ol 28@—[19 PE - E,. (14)
ehg t ehg

15



where

o1 0 -0 o1 0 -0
1 0 Lo 10 ’

A=|0 1 1 0| andB=|0 1 1
Do 0 1 : 0 1
O - 0 1 0 O - 0 1

ae regpectivdly MxM and NxN unit off-diagonad arays. Equation (14) is the time-
marching equation for nontboundary terms.  To insure the dability of solutions, the next

condition must satisfy the 2-D Courant condition:

oDt . 1
£ 5 (15)

At p = 1, the initid condition (7) is used and the vaue a p = 0 is established by

theinitia condition (8), whichis

E.(x y0)  E -E
It Dt

== 0% Yn) (16)

Usng E; and Eo, the nonboundary vaue of E, is given by equation (14). Then the
boundary conditions are added to E, and the process is repeated to find Ez from E and E;

until the desired timeis reached.
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Figure 6. Geometry of the space-time rectangular region
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Figure 7. FDTD space-time node diagram
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B. MODEL DESCRIPTION
During the forward or recording step, equation (14) is used to find the forward

time solutions of the wave eguation usng the initid conditions and the boundary
conditions.  Equation (14) is dso used during the reverse or recondruction step to find
the reverse time solutions of the wave equation by defining the solutions found a the

desred time gep T astheinitia and the boundary conditions.

Since it is not possble to condder an infinite region to propagate the fidds, a
limited region is required to terminate the smulation. Raher than utilizing absorbing
type boundary conditions which yield only gpproximate cancdlation of reflections, it was
decided to avoid dl reflections by employing a digant terminating boundary whose
reflection, athough large, does not arrive back at the sensor boundary until t > T.

1. M odel
Denoting M, and N, as the number of receivers on the recording surface of the x

and y-segment, and Me and N as the spacing between each of the x- and y-segment

recaivers, respectively, the number of grid nodes on the sensor surface segments becomes
M=(Mp-1) Me+1 (x-segment)
Ns=(Np-1)" Net1 (y-segment) (17)
The number of nodes on the distant boundary will be set in thiswork to be
M=2"Ms (x-segment)
N=2"Ns (y-segment) (18)

The sensor surface is located a the gpproximate center of the distant boundary by

defining its edges asfollows:
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ml= (M-My)/2+1 (Left edge), m2= m1l+Ms-1 (Right edge) (x-segment)
nl= (N-Ng)/2+1 (Lower edge), n2=n2+Ngs1 (Upper edge) (y-segment) (19)
The geometry is described in Figure 8.

For smplicity, the spacing of each node (h) is st to 1 m throughout this thess. As

aresult, the 2-D gability condition (15) is rewritten as

_ 1,
9=— J2 (20)

Usudly, in two or three- dimensona problems the sability condition g is chosen
to be twice that needed. Therefore, this modd aso chooses g to be 2. This ensures two
samples between two adjacent points at each time step.

2. Initial And Boundary Conditions
Since this thess condders only the source-free region, no fidds exig within the

recording surface and the disant boundary a the initid time Therefore, the initid

conditions within the distant boundary are given by:
E,(mnl)=0

TE, (m,n) _

0 21
1t (21)
wheem=1, Mandn= 1, N.

Assuming the scattered fidld is to be reflected a the digant boundary, the

boundary conditions at the distant boundary become:

E,(Ln,p) =0, E,(M,n,p)=0

(22)
E,(mLp) =0, E,(mN,p)=0
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where m =1, M, n =1, N and p =1, T. These boundary conditions are maintained

throughout the forward time step.

The fidd data at the recording surface must be stored at each time step. Letting
EZBC1, EZBC2, EzBC3, and EzBC4 denote the arrays storing the field data of each side of
the recording surface during the forward time step:

EzBC1(p)=E,(m, ,nl, p), EzBC2(p)=E,(m ,n2 p)

EzBC3(p)=E, (mLn,,p), EzBC4(p)=E,(m2,n,, p) (23)

where m, = m1, ml+ Mg, ml+2M,...... m2, n; = N1, N1+ Ng, N1+ 2Ng,...... n2, and p=1,T.

The fidld data stored at the recording surface at any forward time step, p = P and p
= P11, where Pisless than T, can be defined as the initid conditions for the time-reversed
Process:

E!(m,nll) = EZBCLP), E!(m,n2])=EBC2(P)

(24)
E!(mLn 1) = EZBC3(P), E.(m2,n, 1) =EzBC4(P)

and

E!(m ,nl2) = EBCIP- 1), E!(m,n22)=EzBC2(P- 1)

El(mLn ,2) = EBC3(P-1), E.(m2,n ,2)=EBCA4P- 1) )

r r

where E; is the time-reversed field and P £ T. Based on conditions (24) and (25),

equation (14) is used to update the time-reversed fidd indde the recording surface until

the reversed time step, P.

If Me = Ne = 1, the time-reversed fidd is eadly updated because 7h is assumed to

be 1. If Me ? 1 or Ne ? 1, however, the fidd data requires interpolation a grid points
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between each two adjacent transducers to maintain the continuity of the fidd. To sisfy
this condition, we use a‘*cubic spline’ interpolation dgorithm in MATLAB.

3. Incident Field
Theincident field used here is represented by a Gaussan impulse plane wave

propageting in the —x direction, centered a x = X, at t = 0, with the form,

f (X, t) =F) (ct+x-x9)? /25 2 (26)

where s isthe sandard deviation of spatid width of the pulse. Viewing the impulsive

waveformat X = X, gives

f(%,t)=e”" (27)

2
where A = 22 > - Itsfrequency spectrum is given by:

F(x, f)=eP™/*, (28)

The 3dB bandwidth of this bassband pulseis given by solution of

1
F (X, faue) :ﬁ (29)
which yields,
_A ,In2 _cC
faum —p— > __2ps VIn2 (30)

Note the reciprocal reationship between the spatid standard deviation and the 3dB

banawidth.
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4, Field Representation
A scattered fidd results when an incident field interacts with a target.  Interactions

include polarization currents excited within didectric materids and surface currents
induced near to the surface of metdlic conductors.  Assuming a target composed of
perfectly conducting metdlic surfaces, the totd tangentia E-fidd is forced to zero a the

surface. Since the totd fidd is given byE,,, = E,. + E;, where Eita, Eine, ad Es

total
represent the totd fidd, the incident fidld and the scattered fidd, respectively, the
tangential scattered fidd is equa to the negative of the incident tangentid fidd a the

metdlic surface of the target.

To properly execute the FDTD time-reversed fidd smulation of the scattered
field when the field focuses on a metdlic target we need to provide the negative incident
fidd boundary condition a dl surface target nodes. However, we usudly do not know
where the target is or when the incident fidd reeches the target. Unless this fidd
boundary condition is applied at these target nodes during the time-reversed process, field
interactions occur between adjacent nodes and the time-reversed scattered field solution

does not become extinguished for times prior to the initid plane wave impact.

Suppose that a point-like target exigts indde the recording surface and the tota
scatered field on the recording surface is dready known. The tota scattered field insde
the recording surface would then consst of the scattered fiedd generated by the time-
reversed boundary conditions on the recording surface and from the negative incident

field boundary conditions caused by nature on the target, or

EZStotaI (F,-t) = EZSB(F" t) + EZST (F" t) (31)
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whereE>

Z total

is the total scattered fidd indde the surface E;, is the scatered field
generated by the recording boundary and E;. is the scattered field interaction with the
target. We can solve forE;, by using only the boundary data on the recording surface

without knowing the location of the target. ES. s able to be set to zero before the time

Z total

o, when the incident field reaches the target. As aresult, we can predict E; . as:
Esr (Fr-1) =- ES (o 1) (32)

where 1; is the location of the target. Once the node location is identified, we can

smulate the target node interaction and properly terminate thetime- reversed process.

5. Conservation Of Energy
The above sequentid node identification process may be extended in theory to

multiple target nodes. However, a different concept is applied in this thess to yidd a cost
function for solution optimization. This concept is that of conservation of energy. The
total scattered fidd energy accumulated within the recording surface during the time-
reversed process will become condant at dl times prior to the initid impact of the
incident fidd on the target. This same result will occur in the time-reversed FDTD
gamulation if the reversed fidd collapses while the correct target node locations are given
negaive incident field boundary conditions. If the accumulated total energy in the time-
reversed solution continues incressing before this initid impact time, then one or more

assumed target nodes are wrong.

The energy metric within the sensor surface at an arbitrary time step, t, is defined
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m2 n2

Energy(t,) = & a [E.(mn,t,)]? (33)

m=mln=nl

where E{m ,n ,t1) is the time-reversed field a each node within the recording surface a

the time step, t;. The accumulated total energy to the time step, T, is defined by

m2 n2

Enegy® =8 & & [Emny)? (34)

t=1 m=ml n=nl

If the accumulated energy in (34) becomes condant, this implies that the time-reversed

field is collgpsing onto the exact target node locations.

An example is presented in the next chapter to illudrate this concept. In the
example, we enforce the negative incident fidd on the exact target nodes during the
reversed time step and obtain the accumulated tota energy. Next, the assumed target
nodes ae dightly perturbed from the origind location to demondrate the increase of

accumulated total energy.
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Figure 8. Smulatiion modd diagram
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V. EXAMPLES OF TIME-REVERSED IMAGING

This chapter presents fundamenta examples of the time-reversed imaging
process.  The fird example illustrates the badsc time-reversed process, while the other
examples consgder the process working under practical consderaion, such as pulsed
radar applications. However, this chapter does not consder some aspects of the red
environment, such as noise, actud 3-D shagpes and materids of targets and any kind of
information loss by the media In dl examples, the dimendons of the FDTD grid and
number of time steps are set as follows: Ms= Ng= 101, T = 300.  This sdection sats the
recording surface as a 100m ~ 100m square grid and the distant boundary as a 200m ~

200m square grid with 201 by 201 points.

All programs used for cdculations shown in this chapter are presented in the

Appendix.

A. TARGETSNODESWITH INITIAL CONDITIONSONLY
This fird example condgders two arcraft-like targets present inside the recording

surface.  The targets are represented by specific grid points that are excited by initid
conditions, Ez (X, y, t=0) =1, but with no subsequent boundary conditions.  Grid points
surrounding the target nodes are dso endowed with initid conditions, but which repidly
decrease with distance, per a Gaussan digribution. No incident fidd is consdered and
there are no boundary field interactions for the target nodes, such as with conducting
targets. This example demondtrates how the reversed fidd converges onto the target

nodes for the fundamenta initia vaue problem.
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1 Forward Time Step Solutions
The forward time smulation is described firg to hdp undersand the reversed

time smulation described later. Figure 9 shows the initid condition of the smulation.
For convenience, the recording surface is presented as a dashed line. Every 60th time step
is presented in Figure 10. Figure 11 represents the find time sep.  Time-reversed

recorded fidd vaues on the inner grid boundary are used to drive the time-reversed

solution while null initid conditions are assumed within the inner grid.

t Lﬂgm{lEz{x.yFI}l}; Forward Time Steps: 300

200 2
180 15
160
........................ [_-' R 1
140
0.5
120
w
= >
® 100 0
=& Ed
an los
G0
__________________________ -1
40
15
20
-2

20 40 &0 aa 00 120 140 160 180 200
H-axls

Figure 9. Initid condition of the forward time step for two arcraft-like targets
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Figure 10. Forward time step for two aircraft-liketargetsat T =61, T =121, T = 181 and
T=241
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Fgure1l. Find time step T = 300 for two aircraft-like targets
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2. Reversed Time Step Solution withMe=Ne=1
This subsection presents the reversed time step smulation in the case of Me = Ne =

1. In this case, each node acts as a transducer; thus, the number of transducers is Mp = Np
= 101. Sdecting Me = Ne = 1 provides the most accurate field representation athough
some errors occur due to the computationd truncation. Therefore, the find reversed time
dep condition does not indicate the exact initid condition of the forward time step. As
seen in Fgure 11, the fied reflected from the outer boundary has crossed the inner
recording surface sometime before the T=300 time sep.  This reflection must not be
used in the reverse-time process.  Thus, the reverse-time processing will begin a T=250.
Figure 12 shows the initid condition of the reversed time step with T = 250. Every 25th
reversed time gep is displayed in Figure 13 and Figure 14, with T = 25 and T = 0 shown

in Fgure 15.

t Lngm{|Ez|:x,y,l=25t}}||} Initial Condition for Tima-Reversal
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20 40 G0 80 100 120 140 160 180 200
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Figure 12. Initia condition of the reversed time step for two arcraft-like targets with
Me= Ne= 1 case
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Figure 13. Reversed time step for two aircraft-like targets with Me= Ne= 1 at T= 225, T=
200, T= 175 and T= 150
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Figure 15. Reversed time step for two aircraft-like targets with Me = Ne= 1 at T= 25 and

T=0
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3. Reversed Time Step Solution with Meg=Ne=5
This subsection presents the case of Me = Ne = 5, which corresponds to My = Np=

21. This sdection means that every 5th point data on the recording surface is used to
cdculate the reversed fidd. Figure 16 shows the initid condition of the reversed time
dep a T = 250. The red circles in Figure 16 represent the transducers. Figure 17 and 18
display every 25th time step, while Figure 19 shows the find condition of the reversed
time step a T=0. This Me = Ne= 5 case provides less accuracy than the case of Me = Ne =1

does, but it ill gives useful targetsinformation.
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Figure 16. Initia condition of the reversed time step for two arcraft-like targets with Me
= Ne: 5

35



X0}

120

X0}

120

+ l.nngE:{:.?.I:‘iiE:ll}; Revverse Time Steps: 260

=t i A i 8 o it o e e .

W
8o ol A 40
K-axS

B0 A

: PR

00

+ Log JE ey =1T5)}1 Reverse Time Steps: 250

=it i A i A4 o it 1 B

K-axS

i) :
3 i
3 ¢
3 i
3 ¢
) i
) 3
3 ;
] [
3 i
T s o B
. 1 NS AP |
o 40 Bl 80 o 12 140 18D 1

: PR

00

+ LngmﬂEz{:.y.I:dﬂﬂ:II}; Reverse Time Steps: 260

4 A i Bk 4 i i 1 o

L R e

i N
-] Bl bl I e T P 11 ]
H-ERIS

1

]

+ Log IE ey =150} Reverse Time Steps: 250

X0}

120

r‘.«.-; i it
2
¥

o

?,,..,

W
8o ol A 40
K-axS

40 Bl

B0 A

Figure17. Reversed time step for two aircraft-like targets with Me = Ne= 5 at T= 225,
T=200, T=175and T= 150

: PR

00




+ Loy IE ey =125)(}; Reverss Time Steps: 250

35

i

E0 B0 DD 1A 140 1E0 180 30
¥-axis

i 40

£ bog, f|E, (xy =75 Reverse Time Steps: 250

35

-15

iz

A 40 B0 BD D0 1A 140 1D 18D 300
K-anis

t LngmHE’{:,',l.l.l 100)[}; Reverse Time Steps: 250

200
180t
160}
140
10
o fe0-
=
a0-
&
an-
-
a0 &0 B0 100 1 40 160 180 F0
¥-axis
£ Log, {IE (e y =501} Reverse Time Steps: 250
200
180
180
Jj{rbugﬁi!iuiiurrwubwi.
140 ] | E
i —f
0™ = =
= i q
& 100 a 3
= E i
an e ::e
T / =
: . 7 4
=] a O III_I i
T e A A e
40
=

i 40 El B0 D3 120 140 180 180 00
KA

Figure 18. Reversed time step for two aircraft-like targetswith Me= Ne =5 at T= 125, T=

100, T=75and T= 50

37

0.5

Rk

15

05

RiE]



+ LngwﬂE;fr.v.hZE}l}; Reverse Time Steps: 250

EISCRTN PN RSl PEINTRTE TS CU RS T T W
3 T i
2 E
3 I g
3 i
I i
: -
k= ¥ E
3 o
'5: [
i | -
= i i k
2z g
3 / g
) iy 1
S A e L E A o]

2 4:€| E.l.'.l aa 1IIII i3
¥-ayis

Final Reversed Time - Lngm{;Ez{x.y.lﬁﬂ}|};

200+

&0

150

Figure 19. Reversed time step for two aircraft-like targetswith Me = Ne= 5 at T= 25 and

T=0

NINTETN TR E TN Y W TW O T Ts D]
3 ]

4

F i

i f

3 P

i L1

3 = -

2 ¥ L

_— .

T E T

-

4n 81 fen 300

Reversa Time Sleps. 250

SEETWE

P g 1

- e 'i !..'—’

[Tt

20 40 &0 B0 0 i
¥-axis

38

b 460 a0 200

L

0.5

L]

45



4, Reversed Time Step Solution With M= Ne= 10
In this find section, the case of Me = Ne= 10 case is Smulated. In this Stuation,

the corresponding number of the transducers is Mp =Np =11 indicating that every 10th
point on the recording surface is used. Figure 20 shows the initid condition of the
reversed time step at T = 250. Figure 21 and 22 display every 25th time step. Figure 23
shows the find sep of the reversed time step, which makes the targets shape difficult to

identify. In this case, theimages of the targets are blurred.
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Figure 20. Initid condition of the reversed time step for two arcraft-like targets with
Me= Ne= 10
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Figure 21. Reversed time step for two aircraft-like targetswith Mg = Ne= 10 at T= 125,
T=100, T= 75 and T= 50
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B. TWO POINT-LIKE SCATTERING TARGETS
In the previous example of two arcraft-like targets an outbound fied is generated

due only to initid conditions without an incident fied. In this section we consder an
impulse radar example with scattering of a Gaussan plane wave by two point-like
metdlic targets. The Gaussan plane wave employed in this modd has a sandard
deviation, s =1m, which corresponds to a 3dB effective bandwidth, BW3qs ~ 125 MHz.
In this example, two point-like targets are used to process the reversed time operation.
Again, the size of the recording surface is Ms = Ns = 101, which isa 100m ~ 100m square
grid for the recording surface and a 200m ~ 200m sguare grid for te distant boundary.
The forward time step solutions are presented in the next subsection followed by the
reversed time step solutions.

1 Forward Time Step Solutions For Two Point-Like Targets
This subsection presents the forward time step solution generated by an impulsve

plane wave incident field. Boundary data at the recording surface is recorded at each
time sep. Two point-like perfect conductor targets forcing the total Efield to zro exist
a the approximate center of the grid. The incident fidd garts marching from x =120.
For convenience, the targets are represented by two black dots in al figures and the
recording surface is displayed as dashed lines. Figure 24 shows the initid condition of
the forward time sep solution for two point-like targets with an incident fiedd. Figure25
displays the results at T= 51,T= 101,T= 151 and T= 201. Findly, the result of T= 251 and

the find condition a T= 300 are presented on Figure 26.

43



+ Log, {IES yt=1)]}

20 40 60 a0 100 120 140 160 180 200
WIS

Figure 24. Initid condition of the forward time step solution for two point-like targets
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2. Reversed Time Step Solutions For The Two Point-Like Tar gets
This subsection provides the results of the reversed time dep smulation. To

smulate the exact time-reversed solution we must enforce the PEC boundary condition of
zero total Efidd at each target node.  Our god is to recover the targets shape, which is
assumed to be unknown, so determining the correct nodes to enforce the PEC boundary
condition will be akin to solving the imaging problem. A correct sdection of the target
nodes will make the reversed scattered field collapse onto the targets and become

completely extinguished at dl times prior to the initid impact of the incident plane wave.

As seen in the forward time step results, the time step, T = 200, is a good choice
to begin the reversed-time dmulation. In this example the spacing of each transducer is
assumed to be 1: Me = Ne = 1.  Only the scattered field is displayed in this example. For
convenience a red dash line is used to represent the location of the incident field pesk at
each time sep. The two point-like targets, represented by two black dots, are located at
Target 1. (X, ¥) = (96,101) and Target 2: (X, y) = (106,101). During the smulation, the
scattered field is forced to be the negative incident field a the target nodes. Because the
gmulation uses the data as exactly recorded on the recording surface during the
corresponding forward time step, the scattered field collapses on the targets. Figure 27
shows the initia condition of the reversed time step a T = 200. Figure 28 and 29 display
every 25th time dep. Fgure 30 indicates the accumulated total energy ingde the
recording surface, where the xaxis corresponds to the reversed time step, T = 200 - t with
t being the forward time step. The accumulated total energy indde the recording surface

remains constant after the scattered field collgpses onto the targets.

47



2001

160

BOF

40

20

- Log, {IES™!(x.y,1=200) }

15

105

Target 1 Target 2
p

H-05

40

G0 a0 100 120 140 160 180 200
H-axiS

Figure 27. Initid condition of the reversed time step for the exact two poirt-like targets

aT=200

48



 Log  1E; ey d=175)1)

0+ Fa
1807 1.5
180
. 1
F
140 |
{05
120
3
AR {1
el
=y A
E].
h
sk
15
!
NSNS W [ Y AN O r ET Y YT SRS T 2
A 40 B0 a0 100 10 140 160 120 200
w-aNie
t
t L'DEIm{]E:H (e d=1250
200 2
180 1.5
180}
1
140 |
0.5
120
3
700 - 4
- |
|y 8.5
cal
T
i5
3].
NN SN (ST | RS FO ST . S N S 2
2 40 E0 20 100 1 140 180 130 20
K=K

.}

&3

 Log €5 ey 4=1500])

15
L S IR [N N >
Ed an 00 1A 140 180 130 2
H-@Kie
ai
- Log, B3 (x,yt=100)1}
2
15
| L
-il'l'!.
-0
0.5
-1
1.5
S OO SRS P | . ], . L 2
81 B} 100 120 140 6D B0 300
E-axis

Figure 28. Reversed time step for the exact two point-liketargetsat T = 175, T = 150, T
=125and T =100

49



200 200
120 - 120 -
150 150
140 140 |
1
Ul Ul |
| | '
00 7100
= = h
20 f 20 f
1
=) =) !
40+ 40+
ot ot
T @M 40 &0 a0 00 1m0 160 130 0 T @M 40 &0 20 00 1@ 40 &0 130 o
w-anis w-anis
. T ; et
+ Log,  [[E¥xy,=25)) + Log, (i y4=1)])
200 00+
120 - 140 +
150 10 +
140 140 |
|
Ul 120t |
| 8 i
o0 - T . |
S 1 ES |
20 f e |
=) &0t
40+ 40
ot o
T @M 40 &0 a0 00 1m0 160 130 0 T m 40 &0 an b 1M 140 160 @0 @m0
w-anis w-anis

£ Log, B3 ey, 1=75)} + Log, B3 ey, =500}

Figure 29. Reversed time step for the exact two point-liketargetsat T = 75, T =50,T =
25andT=1

50




Energy

Final Sub-Grid Energy = 13467036
14W T T T T T T

1200 -
1000 - /
800 -
600

400

o] A" | 1 1 1 ] 1 |
0 20 40 60 &0 100 120 140 160 180
Reversed Time Steps

Figure 30. Accumulated total energy insde the recording surface

51

200



3. Reversed Time Step Solutions For Perturbed Two Point-like Tar gets
This subsection provides the reversed time solutions for PEC boundary conditions

enforced a locations dightly in error from the exact noda locetions of the two point-like

targets.

The negative incident fidd is enforced a nodes represented by red dots while the
exact target node locations are again indicated by black dots.  Since the data used for the
reversed time step is based on the forward time step solutions in which the targets are
located a the correct nodes, the time-reversed scattered field does not become
extinguished, but diverges after the reversed fidd reaches the new targets. Furthermore,
the accumulated totd energy insde the recording surface keeps increesing although the
incident fied initidly does not reech the targets in the forward time step. To confirm the
concept of the accumulated tota energy, three cases are examined. In the first case
Target 1 is perturbed, but Target 2 is not perturbed. In the second case, Target 1 stays a
the origind coordinate, while Target 2 is perturbed. In the last case, both targets are
perturbed.

a. Casel: Target1IsPerturbed, Target 2 IsNot
In this case, Target 1 is perturbed to (X, y) = (90,101), but Target 2 is

dationed at the correct location, (X, y) = (106, 101). The initid condition & T = 200 is
shown in Figure 31. Figure 32 displays the results of every 40th time step. Figure 33
shows the find condition a T = 1. The accumulaied totd energy insde the recording
surface is shown in Figure 34. This case causes the accumulated total energy to increase

after the reversed field reaches the new targets.
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b. Case 2: Target 1 1sNot Perturbed, Target 2 | s Perturbed
In this case, Target 1 is located at the correct coordinate, (X, y) = (96, 101),

but Target 2 is perturbed to (x, y) = (110,101). The initid condition a T=200 is shown in
Figure 35. Figure 36 displays every 40th time sep and Fgure 37 shows the find
condition a T=1. Figure 38 shows the accumulated total energy.

C. Case 3: Both Targets Are Perturbed
Target 1 is perturbed to (X, y) = (90,101) and Target 2 is perturbed to (X,

y)=(110, 101). Figure 39 shows the initid condition a T = 200. Figure 40 displays every
40th time step and Figure 41 shows the find condition a T = 1. The accumulated tota

energy is plotted in Figure 42.
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C. SUMMARY
This chapter presented the fundamentd examples of the time-reversed process for

electromagnetic waves by using the FDTD method.  The fird example demondrated the
ime-reversed process when the target nodes radiate due only to enforced initia
conditions without an incident fidd.  Essetidly perfect recondruction of the two
arcraft-like target images is obtained when al nodes on the recording surface are used to
drive the time-reversed solution. The effect of thinned spacing between the transducers

was then examined. This example, however, is not related to the radar scattering case.

The next example, which conddered an incident Gaussan impulse plane wave,
showed that the time-reversed scattered field collapses onto the point-like targets, with
complete extinction only if the PEC boundary condition is enforced on the target nodes
during the reversed time step. A wrong selection for any target node location yidds a
reversed-time scattered field that initidly collgpses but then expands outward.  Incorrect
target node sdections provide scatered fidd energy a times earlier than the initid
impact of the incident fild. The accumulated energy in the scattered fidd continues to
increase for any wrong target node sdection as shown in the three cases examined. It
thus appears that accumulated energy in the reversed-time scattering solution can be
employed as a “cogt function” in an optimizatiion routine desgned to find the correct

target nodes.
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY
This theds presents an initid atempt to demondrate target imaging by usng a

numerica time-reversed process for the radar imaging applications, in particular, for bi-

datic or multi-static radars.

Demondration of the time-reversed process is done by the FDTD method. The
firda example shows that the time-reversed process can image multiple targets when the
only driving function for the fied is initid conditions & the target nodes  This, however,

is not the radar scattering case.

The radar scattering case was examined next, dbet for a smple example of two
point targets illuminated by an incident Gaussan pulse plane wave. A pefect time-
reversed smulaion provides a scattered field that collapses onto the target nodes and
becomes extinguished for dl times ealier than the initid plane wave impact.  Such a
solution requires enforcement of metdlic boundary conditions (scattered fidd equas
negative of the incident field) at each target node. This, of course, requires a priori
knowledge of the target location, orientation and geometry — the very knowledge being
sought in the time-reversed process. All is not lost however, by what appears to be a
chicken and egg dilemma Wrong sdlections of even one target node for erforcing the
metdlic boundary condition yidds time-reversed scettering solutions which first collapse
then radiate outward from the target region rather than being extinguished. The
accumulated energy in the solution can thus be used as a cogt function for optimization of
the scattering nodes, with the minimum cost solution corresponding to the correct

locations.
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B. CONCLUSIONS AND RECOMMENDATIONS
The function of a radar imaging sysem is to gan ealy identification of non

cooperdive targets. The objective of this thess was to initidly investigate the potentid
utility of the time-reversed numericad process for employment in multi-Static radar
imaging gpplications. Usng an initid condition solution as the first case to investigate,
it was found that superb imaging is possble for multiple targets when dl boundary
nodes, without thinning, are used to drive the time-reversed solution. The radar
sctering case, however, is a different animd tha will require solution of an
optimization problem where the target nodes are the parameters to be optimized
(correctly placed) and the cost function is the accumulated scattered fidd energy in the

time-reversed numerica solution.

Future work on this subject should include investigaion of optimization
dgorithms for solution of the correct target nodes.  The genetic dgorithm may be the
best bet for this task Snce it is robugt in exploring a wide range of locd cost minima in
solving for the best globad solution within the parameter space. In addition, a three-
gpatid dimenson modd supporting volumetric regions should be developed. To
represent a redigic environment, this model should include provison for uneven spacing
of the transducers with 3D targets.  The modd should be evauated relative to required
operating frequencies, sgnd-to-noise ratio and the number and materid properties of

redidic targets.
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APPENDIX. PROGRAM LISTINGS

A. PROGRAM LISTINGS
These programs are used to demondrate the forward scattering and the time-

reversed process in MATLAB. The program used for the first example dlows inputs for
the number of transducers, the spacing between the transducers, the dability condition,
time gep, the initid condition of the region and the dynamic range for the plot. The
program used for the second example alows inputs for the number of transducers, time
dep, the initid pogtion of the incident fidd and the standard deviation of the incident

fidd. Target functions are d <o listed.

These programs are written by Prof. M. A. Morgan and modified by LT. Inaba

1 Program RTWE_2D5 For The First Example

M p=input('Enter number of field sensors on each x-segment of the sub-grid boundary: ;
Me=input('Enter node spacing between each x-segment subgrid boundary sensor: );
Np=input('Enter number of field sensors on each y-segment of the sub-grid boundary: );
Ne=input('Enter node spacing between each y-segment subgrid boundary sensor: );

Ms=(Mp-1)*Me + 1; Ns=(Np-1)*Ne + 1,
disp(['Subgrid: Ms=',int2str(Ms),"; Ns=',int2str(N9)]);

% Default Mesh
M=2*Ms; N=2*Ns,

ml1=fix((M-Mg)/2)+1; m2=m1+Ms-1;
n1=fix((N-Ns)/2)+1; n2=n1+Ns-1,
x=1:M; y=1:N; Y=y*ones(1,M); X=ones(N,1)*x;
xs=ml:m2; ys=nl:n2; Y ssys*one(1,Ms); Xs=ones(Ns,1)*xs,
disp(['Grid: M="int2gtr(M)," m1="int2str(m1),” m2=",int2str(m2),...
" N=int2str(N),' n1="int2str(n1)," n2=",int2str(n2)]);
xe=(mMl:Mem2)'; ye=(nl:Nen2)'; % sub-grid sensor X and y node numbers

disp('Note q >= sgrt(2) Courant requirement for convergence ;
g=input('Enter Integer Vaue for g=dh/(c*dt) (1, 2, etc): ");

Nmin=min(1.5*M-m2,1.5* N-n2); Pmax=fix(q* Nmin);

P=input(['Enter number of time-steps ( < ',int2str(Pmax),") : 1);
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namel=input('Enter Forward Soln Files"Name" for Name _nn.jpg ? (Enter Key to Skip):
if ~isempty(namel),
dpl=input('Enter Time Step Increment Between Stored Frames: ');

pj1=1:.dpl:P;
nj=1; njmx=length(pj1);
end

Q1=1/(cf* q); Q2=(2-4*Q1);

Ez=zeros(N,M,P); % Reserving 3D array

EzIC=zeros(N,M);

EzBCl=zeros(Ms,P); EzBC2=zeros(Ns,P); EzZBC3=EzBC1; EzBC4=EzBC2;
% Subgrid BC's

% Constructing Forward-Time Evolution Arrays
d=ones(1,max(M,N));
A=diag(d(1:N-1),1)+diag(d(1:N-1),-1);
B=diag(d(1:M-1),1)+diag(d(1:M-1),-1);

% Define Basic Aircraft Shaped Grid Locations Centered at y=x=0
[ny,mx]=Air2(N,M);
Ntgt=length(ny);

% Defining IC Node Centers
for nic=1:Ntgt

EzIC(ny(nic),mx(nic))=1;
end

% Define Unit Peak Gaussian Shaped Initid Condition
s=input('Enter IC Std Dev in Grid Spaces (0 to use point ICs): ');
if ~isempty(s),
if s>0,
[ny mx]=find(EzIC==1); % Array locations for |C nodes
Nic=length(ny);
for n=1:Nic
Xc=X-x(mx(n)); Y=Y -y(ny(n));
R2=(1/(2*s*9))* (Xc.*XctYc.*Yo);
Ez(:,;,1)=Ez(:;,:,1) + exp(-R2); % Gaussian spread about each IC node
end
else,
Ez(:,;,1)=EzIC; % Using unit node IC'sfor s<=0
end
end
if isempty(s), Ez(:,:,1)=EzIC; end

% Initid Subgrid BC's
if Me==1,
EzBC1(:,1)=Ez(n1,xs1).; EZBC3(;,1)=Ez(n2,xs1).";
else,
EzBC1(;,1)=spline(xe,Ez(nl,xe1).' xs);
EzBC3(;,1)=spline(xe,Ez(n2,xe,1).' xS);
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end

if Ne==1,
EzBC2(:,1)=Ez(ysm2,1); EzBCA(;,1)=Ez(ysm1,1);
else,

EzBC2(:,1)=spline(ye,Ez(ye, m2,1),ys);

EzBCA(:,1)=spline(ye,Ez(ye,m1,1),ys);
end

% Assuming dEz/dt=G=0 at p=1 to take initia step to p=2 (see 5/10/00 note)
Ez(:,:,2)=0.5*(Q1* (A*Ez(:,:;,1) + Ez(:,;,1)*B) + Q2*EZ(:,:,1));
% p=2 Subgrid BC's
if Me==1,
EzBC1(;,2)=Ez(n1,xs,2).; EzZBC3(:,2)=Ez(n2,xs,2).";
else,
EzBC1(:,2)=spline(xe,Ez(n1,xe,2). xS);
EzBC3(:,2)=spline(xe,Ez(n2,xe,2)." xS);

end
if Ne==1,

EzBC2(:,2)=Ez(ysm2,2); EzZBCA(;,2)=Ez(ysm1,2);
ese

EZBC2(:,2)=splinelye Ez(yem2.2).ys):

EzBCA(:,2)=spline(ye,Ez(ye,m1,2),ys);
end

for p=3:P; % Equation of Evolution
Ez(:,:, p)=Q1* (A*Ez(:,:,p-1)+Ez(.,:,p-1)* B)+Q2* (Ez(:,:,p-1)-Ez(:,:,p-2));
% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update
Ez(1,:,p)=zeros(1,M); Ez(N,:,p)=zeros(1,M);
Ez(:,1,p)=zerog(N,1); Ez(:,M,p)=zeros(N,1);
Ezmx(p)=max(max(abs(Ez(:,-,p))));
% Subgrid BC Update
if Me==1,
EzBC1(:,p)=Ez(n1,xsp).; EzBC3(:,p)=Ez(n2,xsp).";
else,
EzBC1(:,p)=spline(xe,Ez(n1,xe,p). xs);
EzBC3(:,p)=spline(xe,Ez(n2,xe,p).' xS);

end
if Ne==1,

EzBC2(:,p)=Ez(ysm2,p); EZBCA(:,p)=Ez(ysm1,p);
else,

EzBC2(:,p)=spline(ye,Ez(ye m2,p) ys);
EzBCA(:,p)=spline(ye,Ez(ye m1,p) ys);
end
end

while 1

disp('Movie Modes. ")

disp('1l --> 2-D log-scale color plan view')
disp('2 --> 2-D linear scale color plan view')
disp('3 --> 3-D linear scale copper tint')
vsel=input('Select Choice: );
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if ~isempty(vsd), if veel==1 | vsel==2 | vsel==3, break; end; end
end

EzMax=max(Ezmx);

if veel==1,

% Using bi-polar log scaling to retain Ez polarity with selected dynamic range
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000,... : );
SFac=EzMax/DR; Cmax=l10g10(DR); C=[-Cmax Cmax]; Zc=2* Cmax;
XBC=[m1 m2 m2 m1mil]; YBC=[n1nln2n2nl]; ZBC=Zc*[11111];
% sub-grid outline

XBS=[xe; xe; m1*ones(Np,1); m2*ones(Np,1)];

% sub-grid sensor x and y node numbers

YBS=[n1*ones(Mp,1); n2* ones(Mp,1); ye; yel;

ZBS=Zc*ones(2* (Mp+Np),1);

end

if vad==2,
% Using Linear Ez plot
C=[-EzMax EzMaX]; Zc=2* EzMax;
XBC=[m1 m2 m2 m1mi]; YBC=[n1nln2n2nl]; ZBC=Zc*[11111];
% sub-grid outline
XBS=[xe; xe; m1*ones(Np,1); m2*ones(Np,1)];
% sub-grid sensor x and y node numbers
YBS=[n1*ones(Mp,1); n2*ones(Mp,l); ye; ye;
ZBS=Zc*ones(2*(Mp+Np),1);
end

if ved==3, v(5)=-EzMax; v(6)=EzMax; end

% Initidizing Frames
cf reset; v(1)=1; v(2)=M; v(3)=1; v(4)=N;

if veel==1,
EzScl=Ez(:,:,1)/SFec; % scaling so abs(EzScl) <= DR
[p1 g1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |[EzScl| < 1
EzScl(p1+(gl-1)*N)= 1, % to zero log plot

[p1 g1]=find(-1 < EzScl & EzSdl < 0);
EzScl(p1+(g1-1)*N)= -1,
EzL og=sign(Ez(:,;,1))* log10(abs(EzSd));

surf(X,Y ,EzLog); shading interp

title(['Initial Condition \pm Log_{ 10} \{ |E_z(x,y,t=0)|\} ; Forward Time Steps: "...
Jint2str(P)], FontSize, 14)

xlabel ('x-axis, FontSize,18); ylabd ('y-axis, FontSize,18)

axis equal; axig(v); caxis(C); colorbar

view(0,90); hold on

plot3(XBC,Y BC,ZBC,'--k");

if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS,'or'); end

hold off
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end

if veel==2,
surf(X,Y Ez(:,:,1)); shading interp
title(['Initiad Condition E_z(x,y,t=0); Forward Time Steps. ...
Jint2str(P)],'FontSize, 14)
xlabel ('x-axis,'FontSize',18); ylabel (‘y-axis, FontSize,18)
axis equal; axig(v); caxis(C); colorbar
view(0,90); hold on
plot3(XBC,YBC,ZBC,'--k");
if Me~=1|Ne~=1, plot3(XBS)YBS,ZBS,or"); end
hold off
end

if vsdd==3, surfl(Y ,X,Ez(:,:,2));
title(['Initia Condition E_z(x,y,t=0); Forward Time Steps. ',int2str(P)]....
'FontSize,14)
xlabel ('x-axis, FontSize,18); ylabd ('y-axis, FontSize',18)
axig(Vv); colormap(copper);
end

Frame=movien(P,gcf);

hepy=input('Print aHard Copy ? (Y/N): ')'s);

if ~isempty(hcpy), if hcpy =="Y" | hcpy =="y', print; end; end

name=input('Enter "Name" to Save as Name.,jpg File ? (Hit Enter Key to Skip): ','s);
if ~isempty(name), eva(['print ,name," -djpeg991); end

for p=1:P;, % Recording animation frames

if ved==1,

EzScl=Ez(:,:,p)/SFec; % scaing so abs(EzScl) <= DR

[p1 g1]=find(0 <= EzScl & EzSdl < 1); % nonlinear remapping for |EzScl| < 1
EzScl(p1+(gl-1)*N)= 1, % to zero log plot

[pl ql]=find(-1 < EzScl & EzSdl < 0);
EzScl(p1+(ql-1)*N)= -1,
EzL og=sign(Ez(:,:,p)).*l0g10(abs(Ezcl));
surf(X,Y,EzLog); shading interp
title([\pm Log_{ 10} { |E_z(x,y.t="int2str(p),)\} ; Forward Time Steps. ...
int2str(P)],'FontSize', 14)
xlabel ('x-axis,'FontSize',18); ylabel (‘y-axis, FontSize,18)
axis equal; axig(v); caxis(C); colorbar
view(0,90); hold on
plot3(XBC,YBC,ZBC,'--k);
if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS,'or"); end
hold off
if ~isempty(namel),
if p==pj1(nj), name=[namel "' " int2str(n))];
eval(['print ',name," -djpeg997); nj=min(nj+1,njmx);
end; end
end
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if vad==2,
surf(X,Y ,Ez(:,:,p)); shading interp
title(['E_z(x,y,t="int2str(p),"); Forward Time Steps: ',...
int2str(P)],'FontSize', 14)
xlabel ('x-axis,'FontSize',18); ylabel (‘y-axis, FontSize,18)
axis equal; axis(v); caxis(C); colorbar
view(0,90); hold on
plot3(XBC,YBC,ZBC,'--k’);
if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS,'or"); end
hold off
if ~isempty(namel),
if p==pj2(nj), name=[namel ' " int2str(n))];
eva(['print ',name, -djpeg991]); nj=min(nj+1,njmx);
end; end
end

if vad==3, surfl(X,Y,Ez(:,:,p))
tite(['E_z(x,y,t=",int2str(p),); Forward Time Steps:. 'int2str(P)], FontSize',14)
xlabel ('x-axis, FontSize,18); ylabd ('y-axis, FontSize,18)
axig(Vv); colormap(copper);

if ~isempty(namel),

if p==pj1(nj), name=[namel int2str(nj)];
eva(['print ',name, -djpeg991]); nj=min(nj+1,njmx);

end; end

end

Frame(p)=getframe(gcf);
end

if ved==1, title(['Find Time Step \pm Log_{10}\{|E_z(x,y,t="...
int2str(P),)\} 1, FontSize',14)
else
title(['Fina Time Step E_z(x,y,t="int2str(P),"), FontSize,14)
end

hepy=input('Print a Hard Copy ? (Y/N): ','s);

if ~isempty(hcpy), if hcpy =="Y" | hcpy ==y, print; end; end

name=input('Enter "Name" to Save as Name,jpg File ? (Hit Enter Key to Skip): ''s);
if ~isempty(name), eval (['print ',name," -djpeg99]); end

FrameFile=input('Enter File Name to Save Movie Frame Array as*.mat
(Press Enter to Skip): ','s);
if ~isempty(FrameFile), eval(['save ',FrameFile, M N Frame]); end

clear Frame
% Computation Using Reverse-Time BC's Stored From Sub-Grid Boundary
% Constructing Sub-Grid Evolution Arrays

ds=ones(1,max(Ms,Ns));
As=diag(ds(1:Ns-1),1)+diag(ds(1:Ns-1) -1);
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Bs=diag(ds(1:Ms-1),1)+diag(ds(1:Ms-1) -1);
Ps=input('Enter time-step to begin time-reversed BC data: ');

name2=input('Enter Reverse Soln "Name" for Name_nn.jpg ? (Enter Key to Skip): ','s);
if ~isempty(name2),

dp2=input('Enter Time Step Increment Between Stored Frames: *);

pj2=1:dp2:Ps,

nj=1; njmx=length(pj2);
end

disp('Select Reverse-Time Datato Use: )

disp(' 1 ==> Full Grid IC and Full Stored BCs (Exact Reverse-Time Solution)’)
disp(" 2==>No ICsand Stored BC Subset (Redlistic Measured Boundary Data)")
Rdat=input('Make Sdlection: ');

Ezs=zeros(Ns,Ms,Ps); % Reserving 3D array spaces
if Rdat == 1,

% Set IC's at p=Ps and p=Ps-1
E23(1,171)=E2(ysstS); Ezs(:,:,2)=Ez(ysxs,Ps-1);

en

if Rdat == 2,

% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update
Ezq(1,:,1)=EzBC1(;,Ps); Ezs(:,Ms,1)=EzBC2(:,Ps).";
Ezs(Ns,:,1)=EzBC3(;,Ps); Ezs(:,1,1)=EzBCA(:,Ps).";
EzH1,:,2)=EzBC1(;,Ps-1); EzH(:,Ms,2)=EzBC2(:,Ps-1).";
Ezs(Ns,;,2)=EzBC3(:,Ps-1); EzH(:,1,2)=EzBCA(:,Ps-1).";

end

for p=3:Ps; % Equation of Evolution

EzH(:,:,p)=Q1* (As*EzH(,:,p-D)+EzH(:,;,p-1)* B9)+Q2* Ez(:,:,p-1)-EzH(:,:,p-2);
% Explicitely Enforce Ez=0 BC's on Grid Boundary For Update
EzH(1,:,p)=EzBC1(:,Ps-p+1); Ez(:, Msp)=EzBC2(:,Ps-p+1).";
Ezs(Ns,;,p)=EzBC3(:,Ps-p+1); EzH(:,1,p)=EzBCA(;,Ps-p+1).";

end

clf reset;

if ved==1,
EzScl=Ez4(:,:,1)/SFec; % scaling so abs(EzScl) <= DR
[p1 g1]=find(0 <= EzScl & EzSdl < 1); % nonlinear remapping for |EzScl| < 1
EzScl(p1+(gl-1)*Ns)= 1; % to zero log plot

[pl gql]=find(-1 < EzScl & Ezcl < 0);
EzScl(p1+(ql-1)*Ns)= -1;
EzL og=sign(Ez<(:,:,1)).*logl0(abs(EzSdl));
surf(Xs,Ys,EzLog); shading interp
title(["\pm Log_{ 10} \{ [E_z(x,y,t=",int2str(Ps),...

9\} Initid Condition for Time-Reversa'],'FontSize,14)
xlabel ('x-axis,'FontSize',18); ylabel (‘y-axis,'FontSize,18)
axis egud; axis(v); caxis(C); colorbar; view(0,90); hold on
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if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS,'or"); end
hold off
end

if veel==2,
surf(XsY's Ez(:,:,1)); shading interp
title(['E_z(x,y,t="int2str(Ps),...

") Initid Condition for Time-Reversa'],'FontSize,14)
xlabel ('x-axis,'FontSize,18); ylabd ('y-axis, FontSize,18)
axis equa; axig(v); caxis(C); colorbar; view(0,90); hold on
if Me~=1|Ne~=1, plot3(XBS)YBS,ZBS,or"); end
hold off

end

if veel==3, surfl(YsXsEzg(,:,1));
title(['E_z(x,y,t="int2str(Ps),) Initial Condition for Time-Reversal'],'FontSize',14)
xlabel ('x-axis, FontSize,18); ylabel ('y-axis, FontSize,18)
axig(Vv); colormap(copper);

end

Frame=moviein(Ps,gcf);

hcpy=input('Print a Hard Copy ? (Y/N): ')'s);

if ~isempty(hcpy), if hcpy =="Y" | hcpy ==y, print; end; end

name=input('Enter "Name" to Save as Name,jpg File ? (Hit Enter Key to Skip): ','s);
if ~isempty(name), eva(['print ,name," -djpeg991); end

for p=1:Ps, % Recording animation frames

if ved==1,

EzScl=Ez4(;,:,p)/SFac; % scaling so abs(EzScl) <= DR

[p1 g1]=find(0 <= EzScl & EzSdl < 1); % nonlinear remapping for |EzScl| < 1
EzScl(pl+(gl-1)*Ns)= 1; % to zero log plot

[pl ql]=find(-1 < EzScl & Ezcl < 0);
EzScl(p1+(ql-1)*Ns)= -1;
EzlL og=sgn(Ez<(:,:,p))-*logl0(abs(EzScl));
surf(Xs,Y s, EzLog); shading interp
title(['\pm Log_{ 10} { |E_z(x,y,t="int2str(Ps-p+1),)\} ; Reverse Time Steps. ...
int2str(Ps)],'FontSize',14)
xlabel ('x-axis,'FontSize,18); ylabel (‘'y-axis, FontSize,18)
axis equd; axis(v); caxis(C); colorbar; view(0,90); hold on
if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS,or"); end
hold off
if ~isempty(name2),
if p==pj2(nj), name=[name2 '_" int2str(nj)];
eva(['print ‘,name," -djpeg997); nj=min(nj+1,njmx);
end; end
end

if ved==2,
surf(Xs,YsEzs(:,:,p)); shading interp
title(['E_z(x,y,t="int2str(Ps-p+1),"); Reverse Time Steps: ',...
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int2str(Ps)],'FontSize',14)
xlabel ('x-axis,'FontSize,18); ylabel (‘'y-axis, FontSize,18)
axis equd; axis(v); caxis(C); colorbar; view(0,90); hold on
if Me~=1|Ne~=1, plot3(XBS,YBS,ZBS, or"); end
hold off
if ~isempty(name2),
if p==pj2(nj), name=[name2 '_" int2str(nj)];
eva(['print ‘,name," -djpeg997); nj=min(nj+1,njmx);
end; end
end

if vsed==3, surfl(XsYsEzH(:,:,p))
title(['E_z(x,y,t="int2str(Ps-p+1),); Reverse Time Steps. ',int2str(Ps)],'FontSize',14)
xlabel ('x-axis,'FontSize',18); ylabel (‘y-axis,'FontSize,18)
v(5)=-EzMax; v(6)=EzMax; axis(V); colormap(copper);

if ~isempty(name2),

if p==pj1(nj), name=[name2 int2str(nj)];
eva(['print ‘,name," -djpeg997); nj=min(nj+1,njmx);

end; end

end

Frame(p)=getframe(gcf);
end

if veel==1, title(['Finad Reversed Time \pm Log_{ 10}\{ |E_z(x,y,t=0)|\};
Reverse Time Steps: ',...
int2str(Ps)],'FontSize',14)
else,
title(['Final Reversed Time E_z(x,y,t=0); Reverse Time Steps. ...
int2str(Ps)],'FontSize',14)
end

hepy=input('Print aHard Copy ? (Y/N): ','s);

if ~isempty(hcpy), if hcpy =="Y" | hcpy ==y, print; end; end

name=input('Enter "Name" to Save as Name,jpg File ? (Hit Enter Key to Skip): ','s);
if ~isempty(name), eva(['print ‘,name," -djpeg991); end

FrameFile=input('Enter File Name to Save Movie Frame Array as *.mat

(Press Enter to Skip): ','s);
if ~isempty(FrameFile), eval(['save ',FrameFile; M N Frame]); end
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2. ProgramsFT_FDTD2D1 And RT_FDTD2D1m For The Second Example
a. FT_FDTD2D1 For The Forward Time Step

clear dl

opengl neverselect

% Modified to use natural unrotated x(cols) y(rows) array definition
Ns=input('Enter number of x-points on sensor sub-grid boundary: );
Ms=input('Enter number of y-pointsin sensor sub-grid boundary: );

N=2*Ns;M=2*Ms,

Ez=zerog(M,N);

x=1LN; y=1:M; Y=y*ones(1,N); X=ones(M,1)*x;

P=input('Enter number of time-steps: *);
namel=input('Enter Forward "Name" for Name_nn.jpg ?
(Enter Key to Skip): ','s);
if ~isempty(namel),
dpl=input('Enter Time Step Increment Between Stored Frames: ");

pj1=1:dpl:P;
nj=1; njmx=length(pj1);
end

0=2; % g=dh/(c*dt)=2 for haf-step adgorithm
Q1=1/(q*q); Q2=(2-4*Q1); cdt=1/q;

n1=fix((N-Ns)/2)+1; n2=n1+Ns-1,

ml=fix((M-Ms)/2)+1; m2=m1+Ms-1,

xs=nl:n2; ys=sml:mz; % Sensor grid numbers

Nb=2* (m2-m1+n2-nl); % Number of inner boundary nodes = 2* (Ns+tMs-2)

% Defining ordered pairs and absolute addresses of sub-grid boundary nodes
in (M,N) array

mys=zeros(Nb,1); nxs=mys,

mys(1:Ns)=m1; mys(Ns+1:Ns+tMs-1)=ml+1l:m2;

mMysS(Ns+tMs.2* Ns+tMs-2)=m2; mys(2* Ns+Ms-1:Nb)=m2-1:-1:m1+1;
NXxs(1:Ns)=nl:n2; nxg(Ns+1:Ns+Ms-1)=n2;

NXS(NstMs.2* Ns+tMs-2)=n2-1:-1:n1; nxs(2* NstMs-1:Nb)=n1;

% Absolute array addresses allows no-loop loading

mns=(nxs-1)*M + mys,

% Storage for saving scattered field boundary data
Ezb=zeros(Nb,P);

% User Supplied Function Defines Metallic Target Nodes Where Ez=0

[my nx]=Air2(M,N);

Ntgt=length(nx);

xtgt=x(nx); ytgt=y(my); ztgt=ones(Ntgt,1);

mntgt=(nx-1)*M + my; % Absolute array addresses alows no-loop loading

% Displaying Target Nodes and Subgrid
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v=[IN1M -1.111]; cv=[-1.1 1.1];

% sub-grid outline

YBC=[m1 m2 m2mlmi]; XBC=[n1nln2n2nl]; ZBC=[11111];
clf reset; surf(X,Y,Ez); shading interp

axig(Vv); axis equal; caxis(cv); hold on

plot3(xtgt,ytat,ztat, k’); hold on

plot3(XBC,YBC,ZBC,'--k");

view(0,90); figure(1)

xlabel ('x-axis,'FontSize,14); ylabel ('y-axis, FontSize,14)

title('Target Nodes and Sub-grid - Press a Key to Continue ...",'FontSize',14);
hold off

pause

% Congtructing Evolution Arrays
d=ones(1,max(N,M));

A=gparse(Q1* (diag(d(1:M-1),1)+diag(d(1:M-1) -1)));
B=gparse(Q1* (diag(d(1:N-1),1)+diag(d(1:N-1),-1)));

% IC's for -x Propagating Gaussian Impulse Plane-Wave (8 Mar 2001)

disp('Unit Peak Gaussian Impulse Plane Wave Propagatesin -x Direction’);
XO=input('Enter IC Peak Location X0 in Grid Units for the Gaussian Plane Wave: );
sig=input('Enter Standard Deviation of the Gaussian Plane Wave in Grid Units:. );
EO0=1; xc=(x-x0); 9g2=2*sg*dg; ct=0:cdit:(P-1)* cdt; xcp=x0-ct; % inc wave center

% Setting IC's at t=-2 and -1 time steps
Ez1=Ez, Ez2=Ez,

% p=-2
Ezex=EO0* ones(M, 1)* exp(-((xc-2* cdt).*2)/9g2);
Ez1(mntgt)=-Ezex(mntgt);

% p=-1

Ezex=E0* ones(M,1)* exp(-((xc-cdt).2)/sg2);
Ez2(mntgt)=-Ezex(mntgt);

% Using bi-polar log scaling to retain Ez polarity with selected dynamic range
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000, etc : );
SFac=2*EQ/DR; % Assuming max|Ez|=2* EO
Cmax=10g10(DR); cv=[-Cmax Cmax];

V=[IN 1M -Cmax Cmax]; ZBC=Cmax*[11111]};

% Computing Scattered Field and Displaying Totd Field
pshow=(5:5:P); % every 5 time-step indices to display progress
for p=1:P, % Time-Stepping

% Compute Exact Plane Wave
Ezex=E0* ones(M,1)* exp(-((xc+ct(p))."2)/sg2);
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% Equation of Evolution
Ez = A*Ez2 + Ez2*B + Q2*(Ez2-EZz1);

% Enforce PEC BC's on Target Nodes
Ez(mntgt)=-Ezex(mntgt);

% Enforce PEC BC's on Grid Boundary
Ez(:,1)=0; % x=1BC

Ez(1,:)=0; %y=1BC

Ez(:,N)=0; % x=M BC

Ez(M,))=0; % y=N BC

% Time-shift arrays

Ez1=Ez2; Ez2=Ez,

% Saving scattered field at boundary
Ezb(:,p)=Ez(mns);

% Displaying +/- Log10(Tota Field)

EzScl=(Ez+Ezex)/SFec; % scaling so abs(EzScl) <= DR
[p1 gq1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |[EzScl| < 1
EzScl(pl+(ql-1)*M)=1; % to zero log plot

[p1 g1]=find(-1 < EzScl & EzScl < 0);
EzScl(pl+(gl-1)*M)= -1;
EzL og=sign(Ez+Ezex).*log10(abs(Ez));
surf(X,Y ,EzLog); shading interp
axig(V); axis equal; caxis(cv); colorbar; hold on
% Highlight Target Locations and Sub-Grid Boundary
plot3(xtgt,ytat,ztgt,"K"); hold on
plot3(XBC,YBC,ZBC,'--k);
view(0,90);
xlabel ('x-axis,'FontSize,14); ylabel ('y-axis, FontSize,14)
title([\pm Log_{ 10} \{ |E_z{tot} (x,y,t="int2str(p),)\} 1,'FontSiz€,14);
hold of f
figure(1)
if ~isempty(namel),
if p==pj1(nj), name=[namel’ " int2str(p)];
eva(['print ',name," -djpeg997); nj=min(nj+1,njmx);
end; end
pause(.01)
end
name=input('Enter "Name" to Save as Namejpg File ? (Hit Enter Key to Skip): ','s);
if ~isempty(name), eva(['print ‘,name,’ -djpeg991); end

name2=input('Enter "Name" for Name.Mat to Save [N M P Ns Ms x0 sig nx my Ezb]

(Enter Key to Skip): ','s);
if ~isempty(name2), eval (['save ',name2,' N M P Ns Ms x0 sig nx my Ezb1); end
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b. RT_FDTD2D1m For The Reversed Time Step

clear dl

dir *.mat
name=input('Enter "Name" for Name.Mat to Retrieve Boundary and Target Data: ','s);
eva(['load ',name,’ N M P Ns Ms x0 sig nx my EzbT);

% N=number of x-pointsin full grid

% M=number of y-pointsin full grid

% P=number of time-steps

% Ns=number of x-points on sensor sub-grid boundary

% Ms=number of y-points in sensor sub-grid boundary

% x0=Gaussian Plane Wave Initial Peak Location in Grid Units
% sig=Gaussian Plane Wave Standard Deviation in Grid Units
% nx(1,Ntgt)=x-target nodes in (M,N) full grid

% my(1,Ntgt)=y-target nodes

% Ezb(Nb,P)=scattered field at subgrid boundary

n1=fix((N-Ns)/2)+1; n2=n1+Ns-1,
ml=fix((M-Ms)/2)+1; m2=m1+Ms-1,

Xs=nl:n2; ys=ml:m2, % Inner grid coordinatesin (M,N) grid
Y s=ys*ones(1,Ns); Xs=ones(Ms,1)*xs,

Nb=2* (m2-m1+n2-nl); % Number of inner boundary nodes = 2* (Ns+tMs-2)

% Computing Boundary Node Indicesin Inner Sub-Grid System
myb=zeros(Nb,1); nxb=myb;

myb(1:Ns)=1; myb(Ns+1:NstMs-1)=2:Ms,

myb(NstMs.2* NstMs-2)=Ms, myb(2* NstMs-1:Nb)=Ms-1-1:2;
nxb(1:Ns)=1:Ns, nxb(Ns+1:Ns+Ms-1)=Ns,

nxb(NstMs:2* NstMs-2)=Ns-1-1:1; nxb(2* Ns+Ms-1:Nb)=1,
mnb=(nxb-1)*Ms+ myb; % Absolute array addresses allows no-loop loading

% Metallic Target Nodes Where Ez=-Ez\inc
Ntgt=length(nx); ztgt=ones(Ntgt,1); nn=(1:Ntgt)'’; nn1=(1:Ntgt)';
nx1=nx;myl=my;
disp('Exact Target Nodes (node#, nx, my) in Full Grid:")
disp([nn nx my]);
yn=input('Change Assumed Target Nodes ? (Y/N): ','s);
ifyn=="Y"'|yn=="/,
while 1,
n=input('Enter Node# to Change (0 to End): ;
if n<1|n> Ntgt, break; end
nxmy=input('Enter New [nx my] as Vector: );
nx1(n)=nxmy(1); my1(n)=nxmy(2);
disp('Revised Target Nodes (node#, nx, my) in Full Grid:")
disp([nn1 nx1 my1]);
end
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end
% Assumed Target Node Numbersin Inner Grid Coordinates
mys=my-m1+1; nxs=nx-nl+1;

% Absolute Array Addresses for Assumed Target Nodes
mnstgt=(nxs-1)* Ms + mys,

% Assumed Target Node Numbersin Inner Grid Coordinates
mysl=my1-m1+1; nxsl=nx1-n1+1;

% Absolute Array Addresses for Assumed Target Nodes
mnstgtl=(nxsl-1)*Ms + mysl;

0=2; % Assuming g=dh/(c*dt)=2 for half-step agorithm
Q1=1(q*0); Q2=(2-4*Q1); cdt=1/q; ct=cdt*(0:(P-1));

EO=1; xcp=x0-ct; 9g2=2*5g*4(; % Incident field peak location

% Constructing Sub-Grid Evolution Arrays
ds=ones(1,max(Ns,Ms));
As=Q1*(diag(ds(1:Ms-1),1)+diag(ds(1:Ms-1) - 1));
Bs=Q1* (diag(ds(1:Ns-1),1)+diag(ds(1:Ns-1),-1));

Ps=input(['Enter time-step <= ",int2gtr(P)," to initiate time-reversed FDTD solution: 1);

% Using bi-polar log scaling to retain Ez polarity with selected dynamic range
DR=input('Enter 2-D Plot Dynamic Range, e.g. 100, 1000, etc : ');
SFac=2*EQ/DR; % Assuming max|Ez|=2* EO
Cmax=logl10(DR); cv=[-Cmax Cmax];
v=[1N 1M -Cmax Cmax]; yi=[1 N]'; zZi=[Cmax Cmax]";
namel=input('Enter "Name" for Name_nn.jpg ? (Enter Key to Skip): ','s);
if ~isempty(namel),
dpl=input('Enter Time Step Increment Between Stored Frames: *);
pj1=Ps-dpl:1;
nj=1; njmx=length(pj1);
end

% Reserving space for evolution field arrays
Ez=zeros(MsNs); Ez1=Ez; Ez2=Ez;

Energy=zeros(Ps,1); % Accumulated Energy
% Reverse Time Evolution
for p=Ps-1.1;
xi=[xcp(p) xcp(p)]’; % For Incident Field Dashed Line
% Initidizing BC's
if p==Ps % p=Ps
Ezi=E0* ones(Ms,1)* exp(-((xs-xcp(Ps))."2)/sig2); % Incident field
ifyn=="Y"'|yn=="/,
Ez1(mnstgtl)=-Ezi(mnstgtl); % Target data
ese
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Ez1(mnstgt)=-Ezi(mnstgt); % Target data
end
Energy(1)=sum(sum(Ez1.* Ez1));
esaf p==Ps-1% p=Ps-1
Ez2(mnb)=Ezb(:,Ps-1); % Boundary data
Ezi=EC0* ones(Ms,1)* exp(-((xs-xcp(Ps-1))."2)/5g2); % Incident field
if yn=="Y"'|yn==",
Ez2(mnstgtl)=-Ezi(mnstgtl); % Target data
else
Ez2(mnstgt)=-Ezi(mnstgt); % Target data
end
Energy(2)=Energy(1)+sum(sum(Ez2.* Ez2));
clf reset
ese
Ezi=EC* ones(Ms,1)* exp(-((xs-xcp(p))-"2)/sig2); % Incident Field

Ez = As*Ez2 + Ez2*Bs + Q2* (Ez2-Ez)); % FDTD Evolution
if yn=="Y"|yn=="/,

Ez(mnstgtl)=-Ezi(mnstgtl); % Target Node PEC BC's
else

Ez(mnstgt)=-Ezi(mnstgt);
end

Ez(mnb)=Ezb(:,p); % Boundary Data Update
Ez1=Ez2; EZ2=E7, % Time-shift arrays

Energy(Ps-p+1)=Energy(Ps-p)+sum(sum(Ez.* Ez));
end
% Displaying +/- Logl0(Totd Fied)
EzScl=Ez/SFac; % Scattered Field (scaling so abs(EzScl) <= DR)
% EzScl=(Ez+Ezi)/SFac; % Tota Field
[p1 gq1]=find(0 <= EzScl & EzScl < 1); % nonlinear remapping for |[EzScl| < 1
EzScl(p1+(gl-1)*Ms)= 1, % to zero log plot
[pl gl]=find(-1 < EzScl & EzScl < 0);
EzScl(p1+(gl-1)*Ms)= -1,
EzLog=dgn(Ez).*logl0(abs(EzScl)); % Scattered Field
% EzL og=sign(Ez+EZi).*log10(abs(EzScl)); % Tota Field
surf(Xs,Y s, EzL og); shading interp
axis equal; axis(v); caxis(cv); colorbar; view(0,90); hold on
% Highlight Target Locations and Sub-Grid Boundary
if yn=="Y"|yn=="y"
plot3(nx1,myl,ztgt,".r); hold on

end
plot3(nx,my,ztgt,"k"); hold on
plot3(xi,yi,zi,"--r");
% plot3(XBC,YBC,ZBC,'--k);
xlabel ('x-axis, FontSize',14); ylabel ('y-axis, FontSize,14)
title(["\pm Log_{ 10} \{ |E_z"\{ scat} (x,y,t="int2str(p),)\} 1, FontSize, 14);

hold off
if ~isempty(namel),
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if p==pj1(nj), name=[namel '_" int2str(nj)];
eva(['print ',name,' -djpeg997); nj=min(nj+1,njmx);
end; end

%figure(1)

pause(.01)
end

name=input('Enter "Name" to Save as Name.,jpg File ? (Hit Enter Key to Skip): ','s);
if ~isempty(name), eval(['print ',name," -djpeg997]); end

tp=(1:Ps)’;

figure(2); plot(tp,Energy)

xlabel (‘Reversed Time Steps, ' FontSize',14)

ylabel (Energy’, FontSize',14)

title(['Final Sub-Grid Energy = ',num2str(Energy(Ps))], FontSize',14)

3. Target Functions
a. Air2: Two Aircraft-like Targets

function [ny, mx]=Air2(N,M)
% [ny mx] are column arrays of target nodes for 2 aircraft from RTWE_2D5.m

% Define Basic Aircraft Shaped Grid Locations Centered at y=x=0
Tot=zeros(29,2); % Basic Target Node Indices (Y, X) ordered
Tat(1:11,2)=(-5:5);

Tgt(12,2)=-5; Tqgt(12,1)=2;

Tgt(13,2)=-4; Tgt(13,1)=1;

Tgt(14,2)=-1; Tgt(14,1)=4;

Tgt(15,2)=-1; Tgt(15,1)=3;

Tgt(16,2)=0; Tgt(16,1)=3;

Tgt(17,2)=0; Tgt(17,1)=2;

Tgt(18,2)= 1; Tgt(18,1)=2;

Tgt(19,2)= 1; Tgt(19,1)=1;

Tgt(20,2)= 2; Tgt(20,1)=1;

Tgt(21:29,2)=Tgt(12:20,2);

Tgt(21:29,1)=-Tgt(12:20,1);

mc=fix((M-1)/2)+1; nc=fix((N-1)/2)+1; % Approx Grid Center

% Defining Nodes for Two Offset Targets
ny=zerog(58,1); mx=ny;

ny(1:29)=Tat(:,1) + nc+ 7; %Yy offset for tgt #1
mx(1:29)=Tqt(:,2) + mc + 2; % x offset for tgt #1
ny(30:58)=Tgt(:,1) + nc- 7; %y offset for tgt #2
mx(30:58)=Tgt(:,2) + mc - 2; % x offset for tgt #2



b. Pt2: Two Point-Like Targets

function [my, nx]=Pt2(M,N)
% [my nx] are column arrays of simple 2-point target nodes
% 27 June 01 Mod from Point2.m reversing M and N roleswith x and y

Tot=zeros(2,2); % Basic Target Node Indices (Y,X) ordered
Tgt(1:2,2)=[-5 5]

mc=fix((M-1)/2)+1; nc=fix((N-1)/2)+1; % Approx Grid Center
% Defining Nodes
my=zeros(2,1); nx=my;

my(1:2)=Tgt(:,1) + mc;
nx(1:2)=Tgt(:,2) + nc;
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